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ABSTRACT 

 
The analysis by Scott and Van Konynenburg of the binary Van der Waals mixture for 
constant excluded volume uncovered the Type-IV phase diagram as a transition between 
Type-II and Type-III phase diagrams.  The common boundary of the regions of Type-II and 
Type-III is a locus of tricritical points.  The tricritical locus meets the common boundary of 
regions of Type-II and Type-IV at what Meijer coined the Van Laar point in 1989.  As 
early as 1905, the Dutch chemist Van Laar had studied the geometric-mean Van der Waals 
binary mixtures, produced Type-II and Type-III phase diagrams, and found the exact 
coordinates of what we call the Van Laar point, but he did not notice tricriticality explicitly.  
He postulated and proved the existence of Type-IV.  Aspects of his proof are discussed. 
 
Key words: critical state; history; phase diagrams; Van Laar; Van der Waals binary 
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1.  Introduction 
 
In 1890, Van der Waals [1, 2] introduced a generalization of his equation of state to fluid 
mixtures.  The Van der Waals binary mixture equation of state is 
(P + ax/V

2)(V – bx) = RT        (1) 
with P the pressure, T the temperature, V the molar volume, R the molar gas constant, and x 
the mole fraction of the second component (usually the less volatile one). 

The attraction parameter ax is defined in terms of those of the two components, a11, 
and a22 , by means of 
ax = a11(1 - x)2 + 2 a12 x(1 - x) + a22 x

2      (2) 
with a12 the mixing parameter.  Likewise 
bx = b11(1 - x)2 + 2 b12 x(1 - x) + b22 x

2      (3) 
Van der Waals’s was the first model able to produce phase transitions in binary 

fluid mixtures, including critical lines, three and four fluid-phase equilibrium, and 
azeotropy.  After early analytic work performed by Korteweg, see [2, 3] and by Van Laar, 
[4-6], see [2], the model lay dormant until it was resuscitated by Van Konynenburg and 
Scott beginning in the late 1960s.  Their extensive computer-based calculation of phase 
behavior resulted in a well-known classification of Types-I...V of phase behavior for the 
Van der Waals binary mixture [7].  They discovered the small region of Type-IV behavior, 
intermediate between Type II and Type III, and noted that Van Laar, in the early 20th 
century, had calculated the exact coordinates of the point where Types II and III meet.  
This point was later named the Van Laar point by Meijer [8]. The boundary between Type-
III and Type-IV is a locus of tricritical points, where two liquid phases and a vapor phase 
become identical.  The boundary between Type II and Type IV is a locus of double points 
where a critical line touches a three-phase line.   Van Konynenburg and Scott [7] refer to 
several binary mixtures having Type-IV phase behavior, such as benzene and high-
molecular-weight polyisobutylene, first studied by Freeman and Rowlinson in 1960.  

This paper focuses on Type-IV, showing that the Dutch chemist Van Laar was the 
first to postulate Type-IV [4] in 1905, and proved by a computational tour-de-force [6] that 
it follows from the Van der Waals binary-mixture equation.  His discovery of Type IV will 
be discussed in the context of Meijer’s work on the Van Laar point [8, 9].   
 
2.  Phase behavior of the Van der Waals binary mixture 
 
Three types of phase behavior of the Van der Waals binary mixture are shown in the 
pressure-temperature diagrams of Fig. 1.  Type-II shows a continuous critical line 
connecting the critical points C1, C2 of the two components.  There is a three-phase liquid-
liquid-vapor (LLV) split at low temperatures, ending in an upper critical end point CEP1, 
from where a second critical line (LL) departs for high pressures.  Type-III has a critical 
line near the critical point of the first, more volatile component.  This critical line ends at a 
critical end point CEP2, from where a three-phase LLV curve moves to low pressures.  
From the critical point C2 of the second, less volatile component, another critical line, 
which can have a variety of shapes depending on the interactions of the components, 
ultimately runs to high pressures.    
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Fig. 1  Types-II, -III, and -IV of binary-mixture fluid phase diagrams in pressure-
temperature representation.  Full light curves: vapor pressure curves of the two 
components, with C1, C2 their critical points. C0: mixture critical point at infinite pressure.   
CEP: critical end point.  Heavy curves:  three-phase lines liquid-liquid-vapor. Dashed 
curves: critical lines.  
 

Type-IV, which displays two three-phase regions LLV, three critical end points 
CEP1-3, and three critical lines, forms the transition between Type-II and Type-III.  Type-
III transforms into Type-IV if, due to a variation of an adjustable parameter in the model, 
the critical line running to infinite pressure develops a pressure minimum on the way to 
lower temperatures, and cuts through the three-phase line before moving to high pressures.  
The part of the critical line between CEP1 and CEP3  is then no longer stable.   

Type IV transforms into Type II if an interaction parameter is changed so that the 
length of the upper three-phase line (LLV) shrinks to zero.  This happens by passage 
through a (asymmetric) tricritical point, at which the two liquid phases and the vapor phase 
become identical.  Even though the phase rule forbids tricriticality from occurring in a two-
component mixture, it can happen in the Van der Waals model because an interaction 
parameter can vary smoothly, unlike molecular parameters of real fluids. 

 
3.  The Van der Waals binary mixture around the Van Laar point 
 
Van Konynenburg and Scott represent global fluid phase behavior of the Van der Waals 
binary mixture for the case of constant excluded volume in terms of����������	�	�
�� ���
�
�����	����
����	�� ���
�
	���	
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 = (a11 + a22 – 2a12)/(a11 + a22)       (4) 
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the two components: 
 = a11 - a22 ����a11 + a22)        (5) 

Types II, III and IV phase behavior all occur for relatively weak attraction between 
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according to Meijer [8], is shown in Fig. 2.  This figure is not to scale. In fact, Type-IV 
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occupies only a very thin sliver of parameter space.  Van Laar was the first to calculate 
exactly the location of the point where the three regions meet for a version of the Van der 
Waals model.   Fig. 2 also shows a curve labeled ADP, for “actual double point.”  This is 
the locus of points for which the critical line, dipping down in pressure, just touches the 
three-phase line before turning up again, thus causing the transition from Type III to Type 
IV.  In addition, another locus is shown, called MDP, for  “mathematical double point.”  
The MDP, found by Van Laar, see below, forms on an unstable part of the isothermal 
Helmholtz energy surface.  Fig. 2 also shows the tricritical locus, which separates the 
regions of Type II and Type IV.  A variant of Type-IV, named Type IV*, which we will 
not discuss here, separates Type II and Type III beyond the Van Laar point, see Ref. [7]. 

 

 
Fig. 2.  Regions of Type-II, -III and -IV phase behavior around the Van Laar point in the 
plane of two interaction parameters� �� ��
	���	
������
����������������������	�� 	�!	���"����
Tr: locus of tricritical points; MDP: locus of mathematical double points; ADP locus of 
actual double points; gm: geometric-mean locus.  The plot is not to scale. The region of 
Type-IV* is a narrow sliver that is easily missed [7].    
 
4.  Van Laar and the geometric-mean Van der Waals binary mixture 
 
In the period of 1905-1907 Van Laar wrote a dozen papers about the phase behavior of the 
Van der Waals binary mixture.  His interest stemmed from classes he had taken earlier with 
Van der Waals. Lacking the preparation for a PhD study, however, he was, at that time, an 
unpaid lecturer of theoretical chemistry at the University of Amsterdam, repeatedly passed 
over for a more secure position.   

In most, but not all, of Van Laar’s work, the excluded volume bx is taken to be a 
constant independent of x. Van Laar limited his calculations exclusively to the case for 
which the attraction parameter a12 of the mixture is the geometric mean of those of the two 
components 
a12 = (a11.a22)

1/2         (6) 
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In the parameter space of Fig. 2, the geometric-mean locus is indicated as a dotted curve, 
which happens to pass through the meeting point of the three types of phase behavior, a 
lucky coincidence indeed.  

Van Laar [4] began his analysis of the Van der Waals geometric-mean binary 
mixture by deriving an exact relationship for the so-called spinodal, with bx assumed to be 
a linear function of x.  The spinodal is the locus of points on the isothermal Helmholtz 
energy A(V, x) surface at which the curvature turns from positive to negative 
(thermodynamically unstable).  The spinodal is relatively easy to calculate, since it follows 
from a local condition on the surface, contrary to phase boundary, which requires a search 
for two phases fulfilling the Gibbs conditions of phase equilibrium.  Van Laar’s expression 
for the spinodal is linear in temperature, quadratic in composition, and cubic in volume.  
Van Laar’s next step [5] was to find the critical point on each of the isothermal spinodals 
for the case of constant excluded volume.  In the left column of Fig. 3, we show Van Laar’s 
graphs, for three different choices of � �a11

1/2/(a22
1/2 – a11

1/2), of a succession of such 
isothermal spinodals in the V-x diagram, labeled by their respective reduced temperatures.  
Fig. 3 also shows the projection of the critical curve for two choices of , and for b not 
depending on x.  The close-packed volume is at the top, and the critical volume at the 
bottom.  The case marked  = 1 corresponds to a11/a22 = 1/4, a large difference in volatility 
of the two components.  In that case, the critical points of the two components, C1 and C2, 
are not connected.  C1 connects with A, at zero temperature and close packing.  C2 connects 
with C0, at finite temperature and close packing, and therefore infinite pressure.    

The case marked  = 2 corresponds to a11/a22 = 4/9, the difference in volatility 
small enough for the critical line to connect C1 and C2, while A connects with C0. The 
bottom figure will be discussed in Sec. 5.   

Van Laar gave an exact expression for the coordinates T, x, V of the point, at which 
the connectivity of the two critical-line loci switches.  This expression was quoted in Ref. 
[7] and confirmed by means of symbolic computation by Meijer et al. [9].  In the right 
column of Fig. 3, we show Van Laar’s corresponding P-T diagrams. To avoid confusion, 
we use the designations of the types as introduced by Scott and used throughout this paper, 
rather than the different ones used by Van Laar.  The  = 2 case represents a Type-II phase 
diagram, and the  = 1 a Type-III one.   

The Van Laar P-T plots, however, are not the same as the similar-looking plots in 
Fig. 1.  Since Van Laar did not calculate coexistent phases, his plots only show critical 
lines, but not any three-phase regions. Thus, the points R1 and R2 in Fig. 3 are not critical 
end points, but cusps in the critical line, which occur on an unstable part of the Helmholtz  
energy surface.  In the V-x diagram, it is seen that the critical line touches an isothermal 
spinodal at this particular temperature and thus must reverse its course in temperature. Van 
Laar [6] proved that in the P-T diagram this happens by passage through a cusp. 
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Fig. 3. The top row (  = 2) corresponds with Type-II, middle row (  = 1) with Type-III, 
and bottom row ( �= 1.5) with Type-IV phase behavior of the Van der Waals binary 
mixture.  The top and middle row are calculated accurately, the bottom row is 
hypothesized.  From Van Laar in 1905 [5].  Left column:  isothermal spinodals  ��
labeled with the reduced temperature,  and critical lines xxxxx are shown in the volume-
composition plane.  Close-packing is at the top, the critical volume at the bottom.  C0, C1 
and C2 as in Fig. 1.  “A” indicates the critical point at close packing and at T = 0.  Right 
column: Critical lines xxxxx, as well as vapor pressure curves  ������	��#�	�
components, are indicated in the P-T diagram.    

 
5. Van Laar postulates and proves the existence of Type-IV 
 
Van Laar [5] speculated that, in general, the transition from Type II to Type III must take 
place through a new type of phase diagram, which is shown in the bottom row of Fig. 3.   
In P-T coordinates (right), it looks much like Type IV, but again we must remember that 
only critical lines are shown.  The parts of the critical lines around cusps in critical lines are 
located on unstable parts of the Helmholtz energy surface.  The critical line A-C0, running 
to high pressures, touches a spinodal once, in R2.  The critical line connecting C1 and C2, 
however, touches two spinodals, and thus has two cusps, R1 and R2 ����$�	�%&��#��
������
Type II when, on varying a parameter of the model smoothly, R1 and R2 ���	���
	����
coincide at an inflection point in the V-x projection of the critical line.  Type IV turns into 
Type III when, on varying a model parameter, R2 and R2 ���	���
	����������
	������
mathematical double point on the critical line, after which the connectivity of the critical 
lines switches, as discussed in Sec. 4.   

The intrepid Van Laar then set out to prove that his conjecture, the critical line 
connecting C1 and C2 touching two isothermal spinodals in the V-x plane and thus forming 
a new type of phase diagram, follows from the geometric-mean Van der Waals equation 
[6].  First of all, he worked through the case for constant excluded volume.  Perhaps not 
surprisingly, he found, after lengthy calculations, that this is a pathological case, the two 
touching points R1 and R2 �������
�������������
���	
	��'$���''	
���	�&���(������������
Undaunted, Van Laar then turned to another case of the Van der Waals geometric-mean 
binary mixture, a case he had studied before, in which not the excluded volumes, but the 
reduced critical pressures of the two components are equal.  This implies that a11/b11

2 = 
a22/b22

2.  It turned out that the switch of connectivity of the critical lines for this case occurs 
for x as small as 0.01, at close packing V = bx, and for a ratio of the critical temperatures of 
the components close to 10.  Van Laar showed that for a substantial range of reduced 
temperatures the critical line connecting C1 and C2 touches two spinodals.  He calculated 
that the transition from Type II to Type IV occurs for a critical temperature ratio Tc2/Tc1 = 
4.44, and for the transition from Type IV to Type III for Tc2/Tc1 = 9.90.  Van Laar presented 
these extensive calculations in a 50-page paper, one of many he wrote within a few years’ 
time on related topics.  
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6. Discussion 
 
For Van Laar, the truly remarkable phenomenon is the exchange of connectivity of the 
critical lines (Fig. 3).  This marks the end of Type III, and the transition to Type II (at the 
Van Laar point), or, in general, to Type IV (below the Van Laar point in Fig. 2).  This 
transition happens when, in the Type III P-T diagram, the critical line running from C2 to 
C0 touches the critical line running from C1 to A in an MDP, after which two new cusps are 
formed, the critical points R2 ���
�)1 in Fig. 3, bottom right.  From the viewpoint of Van 
Konynenburg and Scott, (Fig. 1), who limited themselves to the thermodynamically stable 
regions, the critical line from C2 to C0 becomes unstable after it touches and then cuts the 
three-phase line in an ADP, that is, before it reaches the MDP.  By focusing on the 
mathematical description, Van Laar defines the boundary between Type-III and Type-IV in 
one way.  By focusing on thermodynamic stability, Van Konynenburg and Scott define the 
boundary differently. 
 As to the transition from Type-II to Type-IV, Van Laar focuses on the coalescence 
of the cusps R1 and R2 ��������#�
��*'	��	����������#���������'	�����������������	����!	������
of the critical line on the V-x plane.  Scott and Van Konynenburg, on the other hand, focus 
on the disappearance of a three-phase line in the stable region, and are thus led to the 
phenomenon of tricriticality, to the study of which Scott and coworkers afterwards made 
major contributions.  The resulting Type-II to Type-IV boundary, however, is the same in 
both cases. 
 As the history of the discovery of Type-IV phase equilibrium illustrates, the 
knowledge of mixture phase diagrams by the Dutch school around 1900 was deep and 
extensive, notwithstanding the lack of computational tools.  Much of the early theoretical 
knowledge has been gradually rediscovered after computers became available.   
 
 
Acknowledgments 
James Rainwater and Cor Peters served as careful and helpful reviewers of the manuscript. 
 
 
References 
 
[1] J.D. van der Waals, Zeitschr. Physik. Chem. 5 (1891) 1-56. 
English translation in J.S. Rowlinson, J.D. Van der Waals on the Continuity of States,  
[2] J. Levelt Sengers, How Fluids Unmix; Discoveries by the School of Van der Waals and 
Kamerlingh Onnes, Edita, KNAW, Amsterdam, (2002). 
[3] J.Levelt Sengers and A.H.M. Levelt, Physics Today     (2002) 47- 
[4] J.J. van Laar, Proc. Kon. Akad. Sci. Amsterdam, 7 (1905) 646-657. 
[5] J.J. van Laar, Proc. Kon. Akad. Sci. Amsterdam, 8 (1905) 33-48. 
[6] J.J. van Laar, Arch. Musée Teyler 10, second part (1906) 109-162. 
[7] P.H. Van Konynenburg and R.L. Scott, Phil. Trans. Roy. Soc. London 298 (1980) 495-
540. 
[8] P.H.E. Meijer, J. Chem. Phys. 90 (1989) 448-456.  
[9] P.H.E. Meijer, A.H.M. Levelt, and B.R. Miller, J. Stat. Phys. 71 (1993) 299-312. 


